翻訳と辞書 |
Reider's theorem : ウィキペディア英語版 | Reider's theorem In algebraic geometry, Reider's theorem gives conditions for a line bundle on a projective surface to be very ample. ==Statement== Suppose that ''L'' is a line bundle on a smooth projective surface with canonical bundle K. Then Reider's theorem states that if ''L'' is nef, ''L''2 ≥ 10, and two (possibly infinitely near) points ''x'' and ''y'' are not separated by ''L'' + ''K'' then there is effective divisor ''D'' containing ''x'' and ''y'' with ''D'' . ''L'' = 0, ''D''2 = −1 or −2, or ''D''.''L'' = 1, ''D''2 = 0 or −1, or ''D''.''L'' = 2, ''D''2 = 0.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Reider's theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|